Collagen type I and decorin expression in tenocytes depend on the cell isolation method
نویسندگان
چکیده
BACKGROUND The treatment of rotator cuff tears is still challenging. Tendon tissue engineering (TTE) might be an alternative in future. Tenocytes seem to be the most suitable cell type as they are easy to obtain and no differentiation in vitro is necessary. The aim of this study was to examine, if the long head of the biceps tendon (LHB) can deliver viable tenocytes for TTE. In this context, different isolation methods, such as enzymatic digestion (ED) and cell migration (CM), are investigated on differences in gene expression and cell morphology. METHODS Samples of the LHB were obtained from patients, who underwent surgery for primary shoulder arthroplasty. Using ED as isolation method, 0.2% collagenase I solution was used. Using CM as isolation method, small pieces of minced tendon were put into petri-dishes. After cell cultivation, RT-PCR was performed for collagen type I, collagen type III, decorin, tenascin-C, fibronectin, Scleraxis, tenomodulin, osteopontin and agreccan. RESULTS The total number of isolated cells, in relation to 1 g of native tissue, was 14 times higher using ED. The time interval for cell isolation was about 17 hours using ED and approximately 50 days using CM. Cell morphology in vitro was similar for both isolation techniques. Higher expression of collagen type I could be observed in tenocyte-like cell cultures (TLCC) using ED as isolation method (p < 0.05), however decorin expression was higher in TLCC using CM as isolation method (p < 0.05). Dedifferentiation potential seemed to be similar for both isolation techniques. CONCLUSION In summary tenocyte-like cells can be obtained with both isolation methods (ED and CM) from the LHB. As no obvious disadvantage could be seen using ED, this method is more suitable for clinical use, as time for cell isolation is shorter and a remarkably higher number of cells can be obtained. However, both isolation methods can further be improved.
منابع مشابه
Phenotypic drift in human tenocyte culture.
Tendon ruptures are increasingly common, repair can be difficult, and healing is poorly understood. Tissue engineering approaches often require expansion of cell numbers to populate a construct, and maintenance of cell phenotype is essential for tissue regeneration. Here, we characterize the phenotype of human Achilles tenocytes and assess how this is affected by passaging. Tenocytes, isolated ...
متن کاملComparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening
BACKGROUND Local injections of anesthetics, NSAIDs, and corticosteroids for tendinopathies are empirically used. They are believed to have some cytotoxicity toward tenocytes. The maximal efficacy dosages of local injections should be determined. A commercial 2D microfluidic xCELLigence system had been developed to detect real-time cellular proliferation and their responses to different stimuli ...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملPlatelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears.
BACKGROUND Platelet-rich plasma (PRP) contains various growth factors and appears to have a potential to promote tendon healing, but evidence is lacking regarding its effect on human tenocytes from rotator cuff tendons with degenerative tears. HYPOTHESIS Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes isolated from human rotato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2012